Appendix

Mathematical Appendix

A.1 FOURIER SERIES AND FOURIER TRANSFORM

If f (x) is a periodic function with a fundamental period L, then it can be expanded in a Fourier series:

o6

f) = z a,e""

n = —oe

where k, = 2mn/L. The coefficients a, of the series are given by

L
-1 ik
a, =7 | fxe " dx
0

The Fourier transform of a function f (x) is defined as

1 —tkx
F(k)= F[f (0] = JTTJ fe Fax

while the inverse Fourier transform is

00

ikx

1
fx) = Eﬁ F(kye " dk

Notice that in quantum mechanics we define the transformations slightly differently, as follows:

oo

¥ (k) = Fly®)] = ——l—j e P * dx
=PV = TR Y
and
(x) = ;J' Wkye™ " dk
v T J2nk
Two formulas of Fourier transform theory are especially relevant.
Identity of norms: Fx)) dx = j IF(k)|* dk
o
Parseval’s theorem: f(x) g*(x)dx = J F(kyG*(k) dk
L
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A.2 THE DIRAC §-FUNCTION

The Dirac d-function is defined by the relation

J- F(x)d (x~xy)dx = f(xp)
Some important and useful properties of the 8-function are given below:
d(—x) = d(x)
1
8(cx) = ES(x) for ¢>0

X3(x - xp) = xu0(x~xp)
Note that x 8 (x) = 0. Also,
F)B(x —xq) = f(xg) 8x —x)

1
dx?-c?) = Z[S(x—c) +d(x+0)] forc>0

1
Slf(x)] = Zf'(x‘)s(x_x,‘)

where x; are simple zeros of the function f (x).

o0

j S(x—x)d(x—-x,)dx = 8(x,—x,)

—oa

We define &'(x) by the relation

f f) ) dx = ~f'(0)
Some properties that are connected to 8'(x) are given below:
§(—x) = -d'(x)
8" x = (-1)"8" )
xﬁ(n)(x) = —nS("_”(x)

f fx) 8"xydx = (=1)"F"(0)

The &-function in three-dimensional space is defined by

Jf(r) 8(r—ry)dxdydz = firy)

where 8(r —rj) = 8(x ~x,)d(y ~ yo) 8(z — z5). In spherical coordinates (r, 8, ¢) we have

1

r¥sin

3(r-ry) d(r—rg) 8(8 —8) 8(d - 0,)

1
= ;—2 8(r —rg) 8(cos 8 — cos 8) d(¢ — )
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The integral representation of the 8-function is obtained by using the definition of Fourier transform [see Sec-
tion A.1], so that

1 ik (x-x
B(x—xp) = 5| € Vax (A.24)

The step function 8(x) (also called the Heaviside function) is defined as

1 for x>0
8() = 10 for x<0 (A.25)
The relation between 8(x) and 6(x) is
de
sy = S (A.26)

Finally, we mention an important relation for d(r):

vz(%) = —41 8(r) (A.27)

A.3 HERMITE POLYNOMIALS
The Hermite polynomials H,(x) are defined by the relation

n ‘.2 d” —X2
Hx)= (-1)'¢ ( - € J n=0,1,2,... (A.28)
dx

The H,(x) are the solutions to the differential equation

d’H (x) , dH (x)

P -2+ 2nH,(x) =0 (A.29)
The orthogonality relation for H (x) is
2 n
J e H, ()H (x)dx = Jn2"n!3,, (A.30)
Two important recurrence relations for H (x) are
dH (x)
P 2nH, (x) H, ()= 2xH(x)-2nH,_,(x)
The first few Hermite polynomials are given below:
Hyx) =1 H(x) = 2x Hyx) = 4x*-2
Hyx) = 8x°— 12x H,(x) = 16x* —48x + 12

A4 LEGENDRE POLYNOMIALS
Legendre polynomials P, (x) are given by Rodrigue’s formula,

[

(-1 d

2"n! dx!

!

P (x) = (-1 (A.31)
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The first few Legendre polynomials are given below:

[APPENDIX

1
Py(x) = 1 P (x) =x Py(x) = 3(3x*-1)
1 1
Pyx) = 5(5x%=3x) Pyx) = g (35x* - 30x2+3)
In terms of cos 0 the first few Legendre polynomials are
Py(cos8) =1 P (cosB) = cos®
1
P,(cos 0) = a1 + 3 cos 20) Py(cos ) = 8(3c059+500s39)

The orthogonality relation of the Legendre polynomials is
1

2
J P,(x) P, (x)dx = mﬁu.

A5 ASSOCIATED LEGENDRE FUNCTIONS

Associated Legendre functions P;" (x) are defined as

m

m md
Pl(x)y =N (1-x) " —P,(x) for —1<x<1
dx

where m 2 0. P, (x) are the Legendre polynomials. Note that
P?(X) =P,(x) P/ (x)=0 for m>I

The differential equation that P;" (x) satisfies is

, & d m m
(l—x)E—2xa+ l(1+1)—l 2 P (x) =

The first few associated Legendre functions are given below:

(A.32)

(A.33)

(A.34)

0 (A.35)

Pl(x) = J1-2 Py(x) = 3x41-2 Pi(x) = 3(1-2)
3
Py(x) = 552 -1)J1-2 Pi(x) = 15x(1-2) Pl = 154(1-8)°
The orthogonality relation of the associated Legendre functions is
1
J P/ (X)P (x)dx = J P, (cos B) P, (cos B) sin 8d0 = T 1%%8“. (A.36)
-1 0
A.6 SPHERICAL HARMONICS
The spherical harmonics are defined as
m _ 21+l(1 m)' m imo
Y, 8,0) = -nH" f an (l+m)’Pl (cosB) e for m=20 (A.37)

and

Y,"®.0) = (-1)" Y@, )1
The differential equation that Y,m satisfies 1s

(A.38)

18( a) 1 9 -
sin626\ 5" 835 ea¢z+1(l+l) 6.9 =0 (A.39)
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The Y;n have well-defined parity given as follows:
!
Y(n-8,m+¢) = (-1)¥/(6,0)

The orthonormalization relation of Y ;" is written as
2

T
I d¢j [Y'(8,9)1 Y8, 0) sin 646 = 3,5,
0 0
and the closure relation

o0 I
1
Z 2 Y7'(®, ¢) [¥](8', )] = 8(cos B cos 85 (¢p-¢) = 60 (0-6)8(0-9¢)

1=0m=-]

Some important recurrence relations are given below:

i a m+
e¢‘(a_e—mcot9)y;n(9,¢) = ﬁ(l+l)_m(m+l)Yl l(e,(h)

(- 2 o0 ), ¢) = JITTD —m (=D ¥ '6,0)
100 = [ GRS o [
The first few Y,' are given below:
1
Yy = N
Y?-Ecose Y:=—J8:sin9ei¢
Yg= 1—2};(300526—1) Y;=_4/§’% sin 8 cos 9¢'® Y§=chsin29e2i°
Y(3)= 1;—1t(5cos36—3cos9) Y;=—J%Siﬂ9(500529—1)€i¢

2 [105 ., 2i0 y_ (35 .50 e
Yy = [35551n" O cos Be Yy =, gansin’ Oe

An important result for spherical harmonics is

AT\ m .
P,(COS a) = 211:1 2 (-D Y;"(ep ¢|)Y7 (92, ¢2)

m=—1
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(A.40)

(A4l)

(A42)

(A43)

(A44)

(A45)

(A.46)

where @ is the angle between the directions (8,, ¢,) and (8,, ¢,). This result is known as the spherical har-

monics addition theorem.

A.7 ASSOCIATED LAGUERRE POLYNOMIALS
First we shall deal with the Laguerre polynomials given by Rodrigue’s formula,
I
L(x) = e&— (xle”
fl ( ) dxl )

The associated Laguerre polynomials are defined as

m

L (x) = i)

(A47)

(A.48)
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where / and m are nonnegative integers. Note that
L) (x) =L, (x) L)(x) =0 for m>1 (A49)
The first few associated Laguerre polynomials are given below:
L:(x) = -] L;(x) =2x—-4 Ly(x) =2
Li(x) =35+ 18x—18 Li(x) = -6x+18 LY (x) = -6
The orthogonality relation of the associated Laguerre polynomials is
J x"e "Ly (x) L (xydx =
0

an’
(T_—”mﬁ,,. (A.50)

A.8 SPHERICAL BESSEL FUNCTIONS

Bessel's differential equation is given as
2 d’ d 2 P
xdx2+xdx+(x -, x =0 (AS51)

where {2 0. The solutions to this equation are called Besse! functions of order /. J(x) are given by the series
expansion

e o J S (=) (x/2)/
O = [1‘2(2”2) Y A21+2) (2+4)] T AT k+ D) fA.52)
R=0

f/1=01,2,...,J,0)= —IIJ,(x). If1#0,1,2,...,J(x) and J (x) are linearly independent. In this case
Ji(x) isbounded at x = 0, while J_(x) is the unbounded Bessel function of the second kind. N /(x) (also called
Neumann functions) are defined by

Jy(x) cos (Im) — J_,(x)
Ny(x) = sin (IT)

(1%0,1,2,...) (A.53)

These functions are unbounded at x = 0. The general solution of (A.57) is
{y(x) = AJ,(x) + BJ ;(x) 1%0,1,2,...

y(x) = AJy(x) + BN,(x) all / (A.54)

where A and B are arbitrary constants. Spherical Bessel functions are related to Bessel functions according to

j[(x) = Jg-’p, |/2(x) (A.55)

Also, the Neumann spherical functions are related to the Neumann function N ,(x) by
T
n(x) = 5N 12(%) (A.56)
J;(x) and n, (x) are given explicitly as

Ji(x) = (=x) '( }Cd%),( ﬂ;—x (A.57)

n,(x)= —(-x) ’( )—IC%)I( = x] (A.58)



APPENDIX] MATHEMATICAL APPENDIX 307

The first few j, (x) and n, (x) are given below:

. sin x CoS x
]o(x) = T no(x) = - X
) = sinx Ccosx _ cosx sinx
N = 2 X n'(x)_—xz_ x
(X) (3 1)s'n 3cos (x) (3 l] 3s'n
=| ——=|sinx——cosx n = —| ——-|cosx——sinx
J2 FE" 2 2 X x2

The asymptotic behavior of the j, (x) and #,(x) as x — o and x — 0 is given by
. xl
I L0 20+ nHn

(21- 1N (4.59)
n (x)x—>() - -
x
) 1. nl
j,(x)x_,m ——);sm(x— ?)
(A.60)

1 7!
(X)L — - cos| x— >

where (2/+1)!! = 1-3-5--. (2I-1)(21+1).



