Mathematical Appendix

A.1 FOURIER SERIES AND FOURIER TRANSFORM

If f(x) is a periodic function with a fundamental period L, then it can be expanded in a Fourier series:

$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{ik_n x} \tag{A.1}$$

where $k_n = 2\pi n/L$. The coefficients a_n of the series are given by

$$a_n = \frac{1}{L} \int_0^L f(x) e^{-ik_n x} dx$$
 (A.2)

The Fourier transform of a function f(x) is defined as

$$F(k) = F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx \qquad (A.3)$$

while the inverse Fourier transform is

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(k)e^{ikx}dk$$
 (A.4)

Notice that in quantum mechanics we define the transformations slightly differently, as follows:

$$\Psi(k) = F[\Psi(x)] = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \Psi(x) e^{-i\rho x/\hbar} dx \qquad (A.5)$$

and

$$\Psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} \Psi(k) e^{ipx/\hbar} dk \qquad (A.6)$$

Two formulas of Fourier transform theory are especially relevant.

Identity of norms:
$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |F(k)|^2 dk \qquad (A.7)$$

Parseval's theorem:
$$\int_{-\infty}^{\infty} f(x) g^{*}(x) dx = \int_{-\infty}^{\infty} F(k) G^{*}(k) dk \qquad (A.8)$$

A.2 THE DIRAC δ-FUNCTION

The Dirac δ -function is defined by the relation

$$\int_{-\infty}^{\infty} f(x) \,\delta\left(x - x_0\right) \,dx = f(x_0) \tag{A.9}$$

Some important and useful properties of the δ -function are given below:

$$\delta(-x) = \delta(x) \tag{A.10}$$

$$\delta(cx) = \frac{1}{c}\delta(x) \quad \text{for} \quad c > 0 \tag{A.11}$$

$$x \delta(x - x_0) = x_0 \delta(x - x_0) \tag{A.12}$$

Note that $x \delta(x) = 0$. Also,

$$f(x) \delta(x - x_0) = f(x_0) \delta(x - x_0)$$
 (A.13)

$$\delta(x^2 - c^2) = \frac{1}{2c} [\delta(x - c) + \delta(x + c)] \text{ for } c > 0$$
 (A.14)

$$\delta[f(x)] = \sum_{i} \frac{1}{f'(x_i)} \delta(x - x_i)$$
 (A.15)

where x_i are simple zeros of the function f(x).

$$\int_{-\infty}^{\infty} \delta(x - x_1) \, \delta(x - x_2) \, dx = \delta(x_1 - x_2) \tag{A.16}$$

We define $\delta'(x)$ by the relation

$$\int_{-\infty}^{\infty} f(x) \, \delta'(x) \, dx = -f'(0) \tag{A.17}$$

Some properties that are connected to $\delta'(x)$ are given below:

$$\delta'(-x) = -\delta'(x) \tag{A.18}$$

$$\delta^{(n)}(-x) = (-1)^n \delta^{(n)}(x) \tag{A.19}$$

$$x \, \delta^{(n)}(x) = -n \, \delta^{(n-1)}(x) \tag{A.20}$$

$$\int_{-\infty}^{\infty} f(x) \, \delta^{n}(x) \, dx = (-1)^{n} f^{(n)}(0) \tag{A.21}$$

The δ -function in three-dimensional space is defined by

$$\int f(\mathbf{r}) \, \delta(\mathbf{r} - \mathbf{r}_0) \, dx \, dy \, dz = f(\mathbf{r}_0) \tag{A.22}$$

where $\delta(\mathbf{r} - \mathbf{r}_0) = \delta(x - x_0) \delta(y - y_0) \delta(z - z_0)$. In spherical coordinates (r, θ, ϕ) we have

$$\delta(\mathbf{r} - \mathbf{r}_0) = \frac{1}{r^2 \sin \theta} \, \delta(r - r_0) \, \delta(\theta - \theta_0) \, \delta(\phi - \phi_0)$$

$$= \frac{1}{r^2} \, \delta(r - r_0) \, \delta(\cos \theta - \cos \theta_0) \, \delta(\phi - \phi_0)$$
(A.23)

The integral representation of the δ -function is obtained by using the definition of Fourier transform [see Section A.1], so that

$$\delta(x - x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ik(x - x_0)} dx$$
 (A.24)

The step function $\theta(x)$ (also called the Heaviside function) is defined as

$$\theta(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x < 0 \end{cases}$$
 (A.25)

The relation between $\delta(x)$ and $\theta(x)$ is

$$\delta(x) = \frac{d\theta(x)}{dx} \tag{A.26}$$

Finally, we mention an important relation for $\delta(\mathbf{r})$:

$$\nabla^2 \left(\frac{1}{r}\right) = -4\pi \,\delta(\mathbf{r}) \tag{A.27}$$

A.3 HERMITE POLYNOMIALS

The Hermite polynomials $H_n(x)$ are defined by the relation

$$H_n(x) = (-1)^n e^{x^2} \left(\frac{d^n}{dx^n} e^{-x^2} \right) \qquad n = 0, 1, 2, \dots$$
 (A.28)

The $H_n(x)$ are the solutions to the differential equation

$$\frac{d^2H_n(x)}{dx^2} - 2x\frac{dH_n(x)}{dx} + 2nH_n(x) = 0 (A.29)$$

The orthogonality relation for $H_n(x)$ is

$$\int_{-\infty}^{\infty} e^{-x^2} H_m(x) H_n(x) dx = \sqrt{\pi} 2^n n! \, \delta_{mn}$$
 (A.30)

Two important recurrence relations for $H_n(x)$ are

$$\frac{dH_n(x)}{dx} = 2nH_n(x) \qquad H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$

The first few Hermite polynomials are given below:

$$H_0(x) = 1$$
 $H_1(x) = 2x$ $H_2(x) = 4x^2 - 2$
 $H_3(x) = 8x^3 - 12x$ $H_4(x) = 16x^4 - 48x^2 + 12$

A.4 LEGENDRE POLYNOMIALS

Legendre polynomials $P_1(x)$ are given by Rodrigue's formula,

$$P_{l}(x) = \frac{(-1)^{l}}{2^{n} n!} \frac{d^{l}}{dx^{l}} (x^{2} - 1)^{l}$$
(A.31)

The first few Legendre polynomials are given below:

$$P_0(x) = 1 P_1(x) = x P_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x) P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

In terms of $\cos \theta$ the first few Legendre polynomials are

$$P_0(\cos \theta) = 1$$

$$P_1(\cos \theta) = \cos \theta$$

$$P_2(\cos \theta) = \frac{1}{4}(1 + 3\cos 2\theta)$$

$$P_3(\cos \theta) = \frac{1}{8}(3\cos \theta + 5\cos 3\theta)$$

The orthogonality relation of the Legendre polynomials is

$$\int_{-1}^{1} P_{l}(x) P_{l}(x) dx = \frac{2}{2l+1} \delta_{l}. \tag{A.32}$$

A.5 ASSOCIATED LEGENDRE FUNCTIONS

Associated Legendre functions $P_l^m(x)$ are defined as

$$P_{l}^{m}(x) = \sqrt{(1-x^{2})^{m}} \frac{d^{m}}{dx^{m}} P_{l}(x) \quad \text{for } -1 \le x \le 1$$
 (A.33)

where $m \ge 0$. $P_{j}(x)$ are the Legendre polynomials. Note that

$$P_{l}^{0}(x) = P_{l}(x) \quad P_{l}^{m}(x) = 0 \quad \text{for} \quad m > l$$
 (A.34)

The differential equation that $P_l^m(x)$ satisfies is

$$\left[(1-x^2) \frac{d^2}{dx^2} - 2x \frac{d}{dx} + \left(l(l+1) - \frac{m^2}{1-x^2} \right) \right] P_l^m(x) = 0$$
 (A.35)

The first few associated Legendre functions are given below:

$$P_{1}^{1}(x) = \sqrt{1-x^{2}} \qquad P_{2}^{1}(x) = 3x\sqrt{1-x^{2}} \qquad P_{2}^{2}(x) = 3(1-x^{2})$$

$$P_{3}^{1}(x) = \frac{3}{2}(5x^{2}-1)\sqrt{1-x^{2}} \qquad P_{3}^{2}(x) = 15x(1-x^{2}) \qquad P_{3}^{3}(x) = 15\sqrt{(1-x^{2})^{3}}$$

The orthogonality relation of the associated Legendre functions is

$$\int_{-1}^{1} P_{l}^{m}(x) P_{l}^{m}(x) dx = \int_{0}^{\pi} P_{l}^{m}(\cos \theta) P_{l}^{m}(\cos \theta) \sin \theta d\theta = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll}. \tag{A.36}$$

A.6 SPHERICAL HARMONICS

The spherical harmonics are defined as

$$Y_{l}^{m}(\theta, \phi) = (-1)^{m} \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) e^{im\phi} \quad \text{for} \quad m \ge 0$$
 (A.37)

and

$$Y_{l}^{-m}(\theta, \phi) = (-1)^{m} [Y_{l}^{m}(\theta, \phi)]^{*}$$
 (A.38)

The differential equation that Y_{l}^{m} satisfies is

$$\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2} + l(l+1)\right]Y_l^m(\theta,\phi) = 0 \tag{A.39}$$

The Y_l^m have well-defined parity given as follows:

$$Y_{l}^{m}(\pi - \theta, \pi + \phi) = (-1)^{l} Y_{l}^{m}(\theta, \phi)$$
 (A.40)

The orthonormalization relation of Y_{l}^{m} is written as

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} \left[Y_{l'}^{m'}(\theta, \phi) \right]^{*} Y_{l}^{m}(\theta, \phi) \sin \theta d\theta = \delta_{l'l} \delta_{m'm}$$
(A.41)

and the closure relation

$$\sum_{l=0}^{\infty} \sum_{m=-1}^{l} Y_{l}^{m}(\theta, \phi) \left[Y_{l}^{m}(\theta', \phi') \right]^{*} = \delta \left(\cos \theta - \cos \theta' \right) \delta \left(\phi - \phi' \right) = \frac{1}{\sin \theta} \delta \left(\theta - \theta' \right) \delta \left(\phi - \phi' \right) \tag{A.42}$$

Some important recurrence relations are given below:

$$e^{i\phi} \left(\frac{\partial}{\partial \theta} - m \cot \theta \right) Y_l^m(\theta, \phi) = \sqrt{l(l+1) - m(m+1)} Y_l^{m+1}(\theta, \phi)$$
 (A.43)

$$e^{-i\phi}\left(-\frac{\partial}{\partial\theta}-m\cot\theta\right)Y_l^m(\theta,\phi) = \sqrt{l(l+1)-m(m-1)}Y_l^{m-1}(\theta,\phi) \tag{A.44}$$

$$Y_{l}^{m}(\theta, \phi) \cos \theta = \sqrt{\frac{(l+1+m)(l+1-m)}{(2l+1)(2l+3)}} Y_{l+1}^{m} + \sqrt{\frac{(l+m)(l-m)}{(2l+1)(2l-1)}} Y_{l-1}^{m}$$
(A.45)

The first few Y_i^m are given below:

$$Y_{0}^{0} = \frac{1}{\sqrt{4\pi}}$$

$$Y_{1}^{0} = \sqrt{\frac{3}{4\pi}}\cos\theta \qquad Y_{1}^{1} = -\sqrt{\frac{3}{8\pi}}\sin\theta e^{i\phi}$$

$$Y_{2}^{0} = \sqrt{\frac{5}{16\pi}}(3\cos^{2}\theta - 1) \qquad Y_{2}^{1} = -\sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta e^{i\phi} \qquad Y_{2}^{2} = \sqrt{\frac{15}{32\pi}}\sin^{2}\theta e^{2i\phi}$$

$$Y_{3}^{0} = \sqrt{\frac{7}{16\pi}}(5\cos^{3}\theta - 3\cos\theta) \qquad Y_{3}^{1} = -\sqrt{\frac{21}{64\pi}}\sin\theta(5\cos^{2}\theta - 1)e^{i\phi}$$

$$Y_{3}^{2} = \sqrt{\frac{105}{32\pi}}\sin^{2}\theta\cos\theta e^{2i\phi} \qquad Y_{3}^{3} = -\sqrt{\frac{35}{64\pi}}\sin^{3}\theta e^{3i\phi}$$

An important result for spherical harmonics is

$$P_{l}(\cos \alpha) = \frac{4\pi}{2l+1} \sum_{m=-1}^{l} (-1)^{m} Y_{l}^{m}(\theta_{1}, \phi_{1}) Y_{l}^{m}(\theta_{2}, \phi_{2})$$
(A.46)

where α is the angle between the directions (θ_1, ϕ_1) and (θ_2, ϕ_2) . This result is known as the spherical harmonics addition theorem.

A.7 ASSOCIATED LAGUERRE POLYNOMIALS

First we shall deal with the Laguerre polynomials given by Rodrigue's formula,

$$L_{l}(x) = e^{x} \frac{d^{l}}{dx^{l}} (x^{l} e^{-x})$$
 (A.47)

The associated Laguerre polynomials are defined as

$$L_l^m(x) = \frac{d^m}{dx^m} L_l(x) \tag{A.48}$$

where l and m are nonnegative integers. Note that

$$L_{I}^{0}(x) = L_{I}(x)$$
 $L_{I}^{0}(x) = 0$ for $m > 1$ (A.49)

The first few associated Laguerre polynomials are given below:

$$L_1^1(x) = -1$$
 $L_2^1(x) = 2x - 4$ $L_2^2(x) = 2$ $L_3^1(x) = -3x^2 + 18x - 18$ $L_3^2(x) = -6x + 18$ $L_3^3(x) = -6$

The orthogonality relation of the associated Laguerre polynomials is

$$\int_{0}^{\infty} x^{m} e^{-x} L_{l}^{m}(x) L_{l}^{m}(x) dx = \frac{(l!)^{3}}{(l-m)!} \delta_{ll}$$
 (A.50)

A.8 SPHERICAL BESSEL FUNCTIONS

Bessel's differential equation is given as

$$\left[x^2 \frac{d^2}{dx^2} + x \frac{d}{dx} + (x^2 - l^2)\right] J_l(x) = 0$$
 (A.51)

where $l \ge 0$. The solutions to this equation are called *Bessel functions* of order l. $J_{l}(x)$ are given by the series expansion

$$J_{l}(x) = \frac{x^{l}}{2^{l}\Gamma(l+1)} \left[1 - \frac{x^{2}}{2(2l+2)} + \frac{x^{4}}{2 \cdot 4(2l+2)(2l+4)} \right] = \sum_{R=0}^{\infty} \frac{(-1)^{k} (x/2)^{l+2k}}{n!\Gamma(l+k+1)}$$
(A.52)

If $l = 0, 1, 2, ..., J_{-l}(x) = -1^l J_l(x)$. If $l \neq 0, 1, 2, ..., J_l(x)$ and $J_{-l}(x)$ are linearly independent. In this case $J_l(x)$ is bounded at x = 0, while $J_{-l}(x)$ is the unbounded Bessel function of the second kind. $N_l(x)$ (also called Neumann functions) are defined by

$$N_{l}(x) = \frac{J_{l}(x)\cos(l\pi) - J_{-l}(x)}{\sin(l\pi)} \qquad (l \neq 0, 1, 2, ...)$$
(A.53)

These functions are unbounded at x = 0. The general solution of (A.51) is

$$\begin{cases} y(x) = AJ_{l}(x) + BJ_{-l}(x) & l \neq 0, 1, 2, ... \\ y(x) = AJ_{l}(x) + BN_{l}(x) & \text{all } l \end{cases}$$
 (A.54)

where A and B are arbitrary constants. Spherical Bessel functions are related to Bessel functions according to

$$j_{l}(x) = \sqrt{\frac{\pi}{2x}} J_{l+1/2}(x) \tag{A.55}$$

Also, the Neumann spherical functions are related to the Neumann function $N_{l}(x)$ by

$$n_{l}(x) = \sqrt{\frac{\pi}{2x}} N_{l+1/2}(x) \tag{A.56}$$

 $j_1(x)$ and $n_1(x)$ are given explicitly as

$$j_{I}(x) = (-x)^{I} \left(\frac{1}{x} \frac{d}{dx}\right)^{I} \left(\frac{\sin x}{x}\right) \tag{A.57}$$

$$n_{I}(x) = -(-x)^{I} \left(\frac{1}{x} \frac{d}{dx}\right)^{I} \left(\frac{\cos x}{x}\right) \tag{A.58}$$

The first few $j_i(x)$ and $n_i(x)$ are given below:

$$j_{0}(x) = \frac{\sin x}{x}$$

$$n_{0}(x) = -\frac{\cos x}{x}$$

$$j_{1}(x) = \frac{\sin x}{x^{2}} - \frac{\cos x}{x}$$

$$n_{1}(x) = -\frac{\cos x}{x^{2}} - \frac{\sin x}{x}$$

$$j_{2}(x) = \left(\frac{3}{x^{3}} - \frac{1}{x}\right)\sin x - \frac{3}{x^{2}}\cos x$$

$$n_{2}(x) = -\left(\frac{3}{x^{3}} - \frac{1}{x}\right)\cos x - \frac{3}{x^{2}}\sin x$$

The asymptotic behavior of the $j_l(x)$ and $n_l(x)$ as $x \to \infty$ and $x \to 0$ is given by

$$\begin{cases} j_{l}(x)_{x \to 0} \to \frac{x^{l}}{(2l+1)!!} \\ n_{l}(x)_{x \to 0} \to -\frac{(2l-1)!!}{x^{l+1}} \end{cases}$$
(A.59)

$$\begin{cases} j_{l}(x)_{x \to \infty} \to \frac{1}{x} \sin\left(x - \frac{\pi l}{2}\right) \\ n_{l}(x)_{x \to \infty} \to -\frac{1}{x} \cos\left(x - \frac{\pi l}{2}\right) \end{cases}$$
(A.60)

where $(2l+1)!! = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2l-1)(2l+1)$.